On the stability of Mindlin-Timoshenko plates
نویسندگان
چکیده
منابع مشابه
On the stability of Mindlin-Timoshenko plates
We consider a Mindlin-Timoshenko model with frictional dissipations acting on the equations for the rotation angles. We prove that this system is not exponentially stable independent of any relations between the constants of the system, which is different from the analogous’ one-dimensional case. Moreover, we show that the solution decays polynomially to zero, with rates that can be improved de...
متن کاملOn Stability of Hyperbolic Thermoelastic Reissner-Mindlin-Timoshenko Plates
In the present article, we consider a thermoelastic plate of Reissner-Mindlin-Timoshenko type with the hyperbolic heat conduction arising from Cattaneo’s law. In the absense of any additional mechanical dissipations, the system is often not even strongly stable unless restricted to the rotationally symmetric case, etc. We present a well-posedness result for the linear problem under general mixe...
متن کاملEigenvalue analysis of Timoshenko beams and axisymmetric Mindlin plates by the pseudospectral method
A study of the free vibration of Timoshenko beams and axisymmetric Mindlin plates is presented. The analysis is based on the Chebyshev pseudospectral method, which has been widely used in the solution of fluid mechanics problems. Clamped, simply supported, free and sliding boundary conditions of Timoshenko beams are treated, and numerical results are presented for different thickness-to-length ...
متن کاملExistence and Boundary Stabilization of the Semilinear Mindlin-Timoshenko System
We consider dynamics of the one-dimensional Mindlin-Timoshenko model for beams with a nonlinear external forces and a boundary damping mechanism. We investigate existence and uniqueness of strong and weak solution. We also study the boundary stabilization of the solution, i.e., we prove that the energy of every solution decays exponentially as t → ∞. AMS Subject Classifications. 35L70, 35B40, 7...
متن کاملWell-posedness and stability of a semilinear Mindlin-Timoshenko plate model
"Well-posedness and stability of a semilinear Mindlin-Timoshenko plate model" I will discuss well-posedness and long-time behavior of Mindlin-Timoshenko plate equations that describe vibrations of thin plates. This system of partial differential equations was derived by R. Mindlin in 1951 (though E. Reissner also considered an analogous model earlier in 1945). It can be regarded as a generaliza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quarterly of Applied Mathematics
سال: 2009
ISSN: 0033-569X,1552-4485
DOI: 10.1090/s0033-569x-09-01110-2